how is titanium made?

What is Titanium

Titanium is known as a transition metal on the periodic table of elements denoted by the symbol Ti. It is a lightweight, silver-gray material with an atomic number of 22 and an atomic weight of 47.90. It has a density of 4510 kg/m 3 , which is somewhere between the densities of aluminum and stainless steel. It has a melting point of roughly 3,032°F (1,667°C) and a boiling point of 5,948°F (3,287 C).

Where can we find Titanium raw materials?

Titanium is the fourth most-abundant metal, making up about 0.62% of the earth’s crust. However, titanium is rarely found in its pure form. Titanium typically exists in minerals, such as anatase, brookite, ilmenite, leucoxene, perovskite, rutile and sphene. Although it is abundant in quantity, the reason for the high cost of titanium is the isolation and rarity of this element, which increases its cost. The leading producers of titanium concentrates include Australia, Canada, China, India, Norway, South Africa and the Ukraine.

How is titanium made?

Titanium is manufactured using what is known as the Kroll process.It involves the extraction, purification, sponge purification, alloy creation, and forming and shaping.

1.Titanium products manufacturer receives titanium concentrates from mines. Ilmenite is processed to remove the iron so that it contains at least 85% titanium dioxide. These materials are put in a fluidized-bed reactor along with chlorine gas and carbon to extraction.

2 The reacted metal is put into large distillation tanks and heated. During this step, the impurities are separated using fractional distillation and precipitation. This action removes metal chlorides including those of iron, vanadium, zirconium, silicon, and magnesium.

3 Next, the purified titanium tetrachloride is transferred as a liquid to a stainless steel reactor vessel. Magnesium is then added and the container is heated to about 2,012°F (1,100°C). Argon is pumped into the container so that air will be removed and contamination with oxygen or nitrogen is prevented. The magnesium reacts with the chlorine producing liquid magnesium chloride. This leaves pure titanium solid since the melting point of titanium is higher than that of the reaction.

4.The titanium solid is removed from the reactor by boring and then treated with water and hydrochloric acid to remove excess magnes

ium and magnesium chloride. The resulting solid is a porous metal called a sponge.
Alloy creation

5.The pure titanium sponge can then be converted into a usable alloy via a consumable-electrode arc furnace. At this point, the sponge is mixed with the various alloy additions and scrap metal. The exact proportion of sponge to alloy material is formulated in a lab prior to production. This mass is then pressed into compacts and welded together, forming a sponge electrode.

6.The sponge electrode is then placed in a vacuum arc furnace for melting. In this water-cooled, copper container, an electric arc is used to melt the sponge electrode to form an ingot. All of the air in the container is either removed ( forming a vacuum) or the atmosphere is filled with argon to prevent contamination. Typically, the ingot is remelted one or two more times to produce a commercially acceptable ingot. In the United States, most ingots produced by this method weigh about 9,000 lb (4,082 kg) and are 30 in (76.2 cm) in diameter.

7.After an ingot is made, it is removed from the furnace and inspected for defects. The surface can be conditioned as required for the customer. The ingot can then be shipped to a finished goods manufacturer where it can be milled and fabricated into various products .